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Approach to equilibrium in adiabatically evolving potentials
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For a potential functioriin one dimensiopwhich evolves from a specified initial forivi;(x) to a different
V¢(x) asymptotically, we study the evolution, in an overdamped dynamics, of an initial probability density to its
final equilibrium. There can be unexpected effects that can arise from the time dependence. We choose a time
variation of the formV(x,t)=V;(x)+(V;—V;)e™™. For aVs(x), which is double welled and ¥;(x) which is
simple harmonic, we show that, in particular, if the evolution is adiabatic, this resultddécr@asen the
Kramers time characteristic &f;(x). Thus the time dependence makes diffusion over a barrier more efficient.
There can also be interesting resonance effects Whieh and V¢(x) are two harmonic potentials displaced
with respect to each other that arise from the coincidence of the intrinsic time scale characterizing the potential
variation and the Kramers time. Both these features are illustrated through representative examples.
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I. INTRODUCTION differs from the corresponding characteristic time for the sta-

The pioneering work of Kramergl] on thermally acti- t@ona_ry potentiaV(x) =V;(x). Wg note that the chara_cter_istic
vated barrier crossing has provided an understanding of théme is the same as Kramers time where the potewfia) is
microscopic mechanism underlying the Arrhenius temperaone with a barrier.
ture dependence of crossing rafgs Several variants of the Our main results are given in the following section, where
basic problem have subsequently been studied in the literave derive the time-dependent probability distribution for a
ture. A fair amount of attention has recently been devoted tapecific form of the time variation leading from the initial
the study of more complex nonequilibrium systems. Thesgotential V;(x) to the final Vi(x). Other forms of the time
include the cases of diffusion over a barrier in the presenc@ariation can be treated by a simple extension of the tech-
of harmonic force[3-1( and diffusion over a fluctuating njques outlined there. In Sec. IlI, two specific examples of
barrier[11-17. The hallmark of the former situation is the eyolving potentials are considered. When the time scale of
phenomenon of stochastic resonance, where the signal-tgse perturbation matches the Kramers time for the stationary
noise ratio of the system response to an applied harm_on'ﬁotentialvf(x), there is aresonancewhich delays the onset
force displays a local maximum as afum_:tlon of t_he dlffusm_nof equilibrium. This case is treated within the time-
constant or the temperature. In fluctuating barriers, the dis;,

covery[12] that the mean first passage time has a minimumdependent perturbation theoretic method of Dirac. The sec-

as a function of the correlation time characterizing the quc-ond case we study is one whergx) has a single minimum

tuation has prompted a wide variety of investigations. TheVhile Vi(x) is bistable. By reducing to an effective two-state

problem of surmounting potential barriefd7—19 has dynamics, we show that the Kramers time for the stationary

gained importance in other fields of science such as evoliPotentialVy(x) is reduced. The paper concludes with a sum-

tionary computation§20,21 and global optimizatiofi22] as ~ mary and discussion in _Sec_. IV. Our result also ;heds some

well. light on the global optimization scheme recently introduced
In the present work we consider the situation of barrier?y Hunjan, Sarkar, and RamaswaittySR) [21,31.

crossing of a time-dependent potential which adiabatically

evolves fromV;(x) att=0 to the potentiaV/(x) ast— . In Il. THE TIME-DEPENDENT DISTRIBUTION
such a situation there will be an eventual equilibrium distri- ) )
bution given by For concreteness, we consider the time-dependent poten-
tial
Pog~ €X Vi 1) -\t
eq ™ EXP =T V(x,1) = Vi(x) + [Vi(x) = Vi(x)Je™, (2

where e is the diffusion constant and the approach to this!Nich evolves via homotopy fror(x) at t=0 to Vi(x) at

equilibrium will be governed by a characteristic time, which t— %+ The Fokker-Planck equation for the probability distri-
bution P(x,1) is

21 (o), 7o
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P(x,t) = ¢p(x, t)exp —

V(X,t) , @
€

reduces to

22 < Hod+ HyDE™,

at ®

where(primes denoting differentiation with respect;yp

Ho= 6‘9—22 + Ev;' - ivf’z, (6)
axs 2 de
H, = ATW—ZAEAV—WAZ—\: —%e‘“, ()
and
AV =V(X) = V(). (8
H, satisfies the eigenvalue equation
Hotn = = Enthn(X) 9
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P(x,0) = Ag exp —\ﬁ, (16)
€
this implies that
Vi V,
&(x,0) = P(x,0) exp— = Ag exp—— (17
2e 2€

with normalization constanf,. The constantg,; are now
determined from the initial condition, as

. v
o=ho| unexp 3. (18)

Substituting this in Eq(15), the complete solution to the
problem can be obtained using E@$3) and(10).

Note that ag—x, ¢(x,t) in Eqg. (10) tends tocygig(X)
=Cgp eXp—V¢/2¢, and therefore,

V
P(x,t — %) — A exp——, (19)
€

the equilibrium distribution corresponding Y§(x).
Also note from Eqgs(11) and(12) that sinceH, has the

with nonpositive eigenvalues. By construction, the grOU”Qime-dependence exp, there will be a resonance when

state has eigenvaluBy,=0, with the eigenfunctiony(x)

E,—E,=\, giving a secular growth of the first-order term,

=A exp-Vi(x)/ 2¢, A being a normalization constant. Denot- ¢ (t)ct. This is analogous to case of the time-dependent

ing the space-independent parttdf by Vi(t), the solution of
Eq. (3) can be written as

Bx,1) = 2 cy(t)exg B0Vl () (10)

Application of the standard techniques of the Dirac time-

dependent perturbation theory leads to

(1) = 2 Cot)(mH,|n)e EnEnlt) (1)

where
Hy=e™(H; = V). (12

The perturbative expansion for the coefficients in 8d) is
in powers ofH,,

Cn(t) = 2 an(t) (13)
j=0
with
Cno = 0, (14)
and forj= 1,
Coj(t) = 2 Copjma (DM H )& EnEnlt, (15
m

It can be seen immediately that thg’s are constants deter-
mined by the state of the systemtat0. Assuming that the
system is in the equilibrium state of the potenti&lx) at t
=0, namely,

perturbation theory26,27 in quantum mechanics.

IIl. APPLICATIONS
A. Case |

Consider first a case where the initial and final potential
have the same number of minima. Specifically, we take
=(x-a)? and V{(x) =x?, namely, harmonic potentials that are
spatially displaced. This leads to

AV =a? - 2ax, (20)
NM@?-2ax) 2ax| a%e™
j=|-MEmEW 2 wel gy
2e € €
which has the space-independent part
)\az aze—)\t
Vo(t) == o : (22
€ €
giving
ax
Hy(x,t) = —(\ + 2)e™. (23
€
The leading term in the expansion, namely,
oz e 41X (24)
—e——+1——
0 6(9 X2 €

has the eigenvalue spectrui,=2n (n=0,1,2,..) with
eigenfunctions
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T ~ X2 aging to cause transition to neighboring states. The approach
Pn(x) =[2"n! Vem] Hn(x/ve)exp—z—e, (25 to equilibrium depends on the value of the adiabaticity pa-
rameterA and there are three different regimes of interest.
whereH,(y) are the usual Hermite polynomials. The time- (1) When\ > 2, the approach to equilibrium is governed
dependent probability is therefore by €2 but the coefficient of this term is significantly in-

2 2_5 creased.
P(x,t) = ¢(x,t)exp[— x ue—xt} . (26) (2) If X\<2, the approach is controlled kg™ and in the

2¢ 2¢ long time limit
giving, for ¢(x,t), the expansioricf. Eq. (10)]

a2 —\t P(X,t) ~ 1/2€_X2/{1 ¥ <4LX/€>€_M] . (33)
90 = X co(expl ~ 2t (1-e™) |y, (27) (e) 27\
n
. . ' _ . (3) Finally, we have the extremely interesting situation of
To first order in the perturbation expansion, we find A=2, in which case

n e—a2/25

cn(tZO)Z{ 1/2} nAL2° (28)
1 daxt
262 | [2™!] P(x,t) = —me-xsz(l +—e 2+ ) (34)
(me) €

At the lowest order of perturbation theory, only togy's,
which are given by Eq(28) matter. Straightforward algebra

now shows that This is the resonance that we have discussed already, which
shows up as the coefficient of the usual correctiofPgg(x)
diverging with time.
€ € € This divergence of the coefficient a2 in Eq. (34)
+0(Cpy). (299  would eventually get transferred to the argument of the ex-
) ] . ) ponential function as is usual in such cases. This can be
Since all terms to first order have not been included in thesxplicitly verified in this case, because an exact solution for
perturbation, the equilibrium distribution is not properly nor- harmonic potentials has been written down by Hanggi and
malized ast— and has the extraneous factor &x@’/€).  Thomas[28]. The answer foP(x,t), adapting the work of

After Computation Oanl from Eq(15) we find, after tak|ng Hangg| and Thomas to this situation is
the appropriate matrix elements and carrying out the integra-

tion over time, that

1|2 x*+a’ 2axe? axe™M)-e?
Pxt)=| — | exp- + exp

afn+1\12 P(x,t) = [—l }1/2
Cn(t) = _<T) [1-e™M]cy,1(0) me(l -e¥)
€ » Xexp[_ (x— ae—Zt[l +2(1- e—(x—Z)t)/()\ _ 2)])2
+ (%) 2 (g) [1-€%c,4(0). (30) e(1-e™ '

(39
The coefficientsc,.1(0) are known from Eq(28) and after
some amount of algebra we get, correct to first order in th

perturbing “Hamiltonian,” T we expand the exponential in powers afall the three

cases cited above are exactly reproduced. This shows that the

1\¥2 2 2axe™M  dax(eZ-eM method of quantum mechanical time-dependent perturbation
P(x,t) = <_) e B (A—2)e o theory that we have adopted here is capable of yielding the
correct results.
(3D
The effect of time dependence in the potential can be seen by B. Case ||
contrasting the above result, E@1) with the sudden limit,
when the potential is instantaneously changed fig(w) to We now turn to a situation where an initially single well

Vi(x). The initial probability distribution corresponding to structureV;=x? crosses over to a double well structwe
Vi(x) is (1/me)Y2%e*-a%¢ and this approaches the equilib- =—X*/2+x*/4 as t—. The approach to equilibrium in

rium distribution corresponding td(x) as double well potential is governed by the Kramers time, the
" ” long time scale coming from the possibility of noise induced
1 e 2axe’ hopping. Following the procedure outlined in E¢4) and
P(xt) = (;) e {1 + —] : (32) (5)?5vegget s “

The coefficient ax/e of €2 has the extra factorl+2/(\ 5 . ) )
-2)]. Note that the time-dependent perturbation effectively Ho=— ed_ N (x*=-x)° 1+3K
keeps the system from attaining equilibrium by always man- 0

dx? 4e 2 (36)
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3 1 A 1-eg™ 5\

Hyi=—(1-x%) = —x*3-x9)(1 -x3) - —x4(6 -x?) ci(t) =B exp—— (44)
2 de 8e 4e
. ixz(S 21— (37) with B a constant of integration. From E@9) we find, after

a series of standard manipulations, that

—At
The low-lying part of the eigenvalue spectrumkf is char- d(x,t) = Nepp(x)| 1 + ——= LAt ) -2 ze)\ &
acterized by a set of close doublets with exponentially small PolX )
separations, while the gap between two doublets i©(d. =Neo(X)[1 + f(x)e %] (45)
The ground staté,=0, while the first excited state is the

ground state of the supersymmetric partner of In the abovea is a measure of the strength of the ground

state wave function at the origin, and where
VAR 3(1-eMa
—_— - 38 =5+ —

4e 2 (38) N (48
and is exponentially smaR9,30d. The next excited state has The inverse ofd.; gives the effective Kramers time for the
eigenvalue approximately 2, and hence we can treat the dyystem and is shorter than the scale for the time-independent
namics of the low-lying states as that of a two level systemsystem. This speeding up is most effect in the adiabatic limit,
Denoting the two states by, and ¢;, with eigenvalues 0 namely, forA <1.

and s, then IV. DISCUSSION AND SUMMARY

B(X,1) = Co(t) do(X) + Cy()e™ ¥y (X). (39 The above result is a simple analog of the global optimi-
zation principle on an evolving energy landscape. In this case
one is interested in finding the minima of a multidimensional
Co = (bolHa| dboye ™Mcy(t) + (ho|Hy| pr)cy (e M+t (40) potentigl energy surface which constitute; the energy land-
scape in problems such as protein folding or finding the
. o ~ ground state configuration of atomic or molecular clusters.
€1 = (diHil poye ™ V'co(t) + (di|Hi e ™ei(D). (4D The observation of HSR21,37 that continuously and adia-
batically varying potentials assist approach to the desired
configuration at— « by avoiding trapping in local minima.
We have shown in a model system, a similar time depen-
dence, the decrease of Kramers time makes escape from a
. — at trapping potential easier.
C1 = Co( ¢y [Ha|ppe™, (42) The above demonstration of a reduced Kramers time is
where for a one-dimensional system. The extension to two dimen-
sions is reasonably straightforward following the technique
in Ref. [30] when a well defined tunneling path exists be-
1= _(1 x%) + _X2(3 X*)(1=x) = 2(6 x). tween the two minima. Extensions to more general situations
and to three dimensions is being investigated. We have also
(43) seen that this technique of dealing with time-dependent per-
The primary contribution tc{¢T|—T|¢) comes from the vi- turbationg can model the_ stochastic resonance as a kind of
o : i 1151 X ) parametric resonance. With the emerging importance of sto-
cinity of x=1 since¢, is an antisymmetric wave function ¢paqtic resonance in biological systefid®] it is possible
strongly peaked neax+1. Since(¢;|H|¢1)=-5\/4¢e, we  that yet another way of looking at stochastic resonance can

The dynamics oty andc, is governed by

Since the perturbatioR; is even,{$4|H|$o)=0, decoupling
Co andc;. Integrating Eq(41) and dropping terms like 2\
which are unimportant for>\"1, we find

have yield new insights.
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