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For a potential function(in one dimension) which evolves from a specified initial formVisxd to a different
Vfsxd asymptotically, we study the evolution, in an overdamped dynamics, of an initial probability density to its
final equilibrium. There can be unexpected effects that can arise from the time dependence. We choose a time
variation of the formVsx,td=Vfsxd+sVi −Vfde−lt. For aVfsxd, which is double welled and aVisxd which is
simple harmonic, we show that, in particular, if the evolution is adiabatic, this results in adecreasein the
Kramers time characteristic ofVfsxd. Thus the time dependence makes diffusion over a barrier more efficient.
There can also be interesting resonance effects whenVisxd and Vfsxd are two harmonic potentials displaced
with respect to each other that arise from the coincidence of the intrinsic time scale characterizing the potential
variation and the Kramers time. Both these features are illustrated through representative examples.
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I. INTRODUCTION

The pioneering work of Kramers[1] on thermally acti-
vated barrier crossing has provided an understanding of the
microscopic mechanism underlying the Arrhenius tempera-
ture dependence of crossing rates[2]. Several variants of the
basic problem have subsequently been studied in the litera-
ture. A fair amount of attention has recently been devoted to
the study of more complex nonequilibrium systems. These
include the cases of diffusion over a barrier in the presence
of harmonic force[3–10] and diffusion over a fluctuating
barrier [11–17]. The hallmark of the former situation is the
phenomenon of stochastic resonance, where the signal-to-
noise ratio of the system response to an applied harmonic
force displays a local maximum as a function of the diffusion
constant or the temperature. In fluctuating barriers, the dis-
covery[12] that the mean first passage time has a minimum
as a function of the correlation time characterizing the fluc-
tuation has prompted a wide variety of investigations. The
problem of surmounting potential barriers[17–19] has
gained importance in other fields of science such as evolu-
tionary computations[20,21] and global optimization[22] as
well.

In the present work we consider the situation of barrier
crossing of a time-dependent potential which adiabatically
evolves fromVisxd at t=0 to the potentialVfsxd as t→`. In
such a situation there will be an eventual equilibrium distri-
bution given by

Peq, exp −
Vfsxd

e
, s1d

where e is the diffusion constant and the approach to this
equilibrium will be governed by a characteristic time, which

differs from the corresponding characteristic time for the sta-
tionary potentialVsxd=Vfsxd. We note that the characteristic
time is the same as Kramers time where the potentialVfsxd is
one with a barrier.

Our main results are given in the following section, where
we derive the time-dependent probability distribution for a
specific form of the time variation leading from the initial
potential Visxd to the final Vfsxd. Other forms of the time
variation can be treated by a simple extension of the tech-
niques outlined there. In Sec. III, two specific examples of
evolving potentials are considered. When the time scale of
the perturbation matches the Kramers time for the stationary
potentialVfsxd, there is aresonancewhich delays the onset
of equilibrium. This case is treated within the time-
dependent perturbation theoretic method of Dirac. The sec-
ond case we study is one whereVisxd has a single minimum
while Vfsxd is bistable. By reducing to an effective two-state
dynamics, we show that the Kramers time for the stationary
potentialVfsxd is reduced. The paper concludes with a sum-
mary and discussion in Sec. IV. Our result also sheds some
light on the global optimization scheme recently introduced
by Hunjan, Sarkar, and Ramaswamy(HSR) [21,31].

II. THE TIME-DEPENDENT DISTRIBUTION

For concreteness, we consider the time-dependent poten-
tial

Vsx,td = Vfsxd + fVisxd − Vfsxdge−lt, s2d

which evolves via homotopy fromVisxd at t=0 to Vfsxd at
t→`. The Fokker-Planck equation for the probability distri-
bution Psx,td is

] P

] t
=

]

] x
SP

] V

] x
D + e

]2P

] x2 , s3d

which, with the substitution[23–25],
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Psx,td = fsx,tdexp −
Vsx,td

2e
, s4d

reduces to

] f

] t
= H0f + H1stde−ltf, s5d

where(primes denoting differentiation with respect tox),

H0 = e
]2

] x2 +
1

2
Vf9 −

1

4e
Vf8

2, s6d

H1 = FDV9

2
−

l

2e
DV − Vf8

DV8

2e
G −

sDV8d2

4e
e−lt, s7d

and

DV = Visxd − Vfsxd. s8d

H0 satisfies the eigenvalue equation

H0cn = − Encnsxd s9d

with nonpositive eigenvalues. By construction, the ground
state has eigenvalueE0=0, with the eigenfunctionc0sxd
=A exp−Vfsxd /2e, A being a normalization constant. Denot-
ing the space-independent part ofH1 by V0std, the solution of
Eq. (3) can be written as

fsx,td = o cnstdexpf−Enstd+eV0st8ddt8gcnsxd. s10d

Application of the standard techniques of the Dirac time-
dependent perturbation theory leads to

ċnstd = o
m

cmstdkmuH2unle−sEm−Endt, s11d

where

H2 = e−ltsH1 − V0d. s12d

The perturbative expansion for the coefficients in Eq.(10) is
in powers ofH2,

cnstd = o
j=0

`

cnjstd s13d

with

ċn0 = 0, s14d

and for jù 1,

ċnjstd = o
m

cm,j−1stdkmuH2unle−sEm−Endt. s15d

It can be seen immediately that thecn0’s are constants deter-
mined by the state of the system att=0. Assuming that the
system is in the equilibrium state of the potentialVisxd at t
=0, namely,

Psx,0d = A0 exp −
Vi

e
, s16d

this implies that

fsx,0d = Psx,0d exp
Vi

2e
= A0 exp −

Vi

2e
s17d

with normalization constantA0. The constantscn0 are now
determined from the initial condition, as

cn0 = A0E
−`

`

dxcnsxdexp −
Vi

2e
. s18d

Substituting this in Eq.(15), the complete solution to the
problem can be obtained using Eqs.(13) and (10).

Note that ast→`, fsx,td in Eq. (10) tends toc00c0sxd
=c00 exp−Vf /2e, and therefore,

Psx,t → `d → A exp −
Vf

e
, s19d

the equilibrium distribution corresponding toVfsxd.
Also note from Eqs.(11) and (12) that sinceH2 has the

time-dependence exp−lt, there will be a resonance when
Em−En=l, giving a secular growth of the first-order term,
cn1std~ t. This is analogous to case of the time-dependent
perturbation theory[26,27] in quantum mechanics.

III. APPLICATIONS

A. Case I

Consider first a case where the initial and final potential
have the same number of minima. Specifically, we takeVi
=sx−ad2 andVfsxd=x2, namely, harmonic potentials that are
spatially displaced. This leads to

DV = a2 − 2ax, s20d

H1 = F−
lsa2 − 2axd

2e
+

2ax

e
G −

a2e−lt

e
, s21d

which has the space-independent part

V0std = −
la2

2e
−

a2e−lt

e
, s22d

giving

H2sx,td =
ax

e
sl + 2de−lt. s23d

The leading term in the expansion, namely,

H0 = e
]2

] x2 + 1 −
x2

e
s24d

has the eigenvalue spectrumEn=2n sn=0,1,2, . . .d with
eigenfunctions
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cnsxd = f2nn ! Îepg−1/2Hnsx/Îedexp −
x2

2e
, s25d

whereHnsyd are the usual Hermite polynomials. The time-
dependent probability is therefore

Psx,td = fsx,tdexpF−
x2

2e
−

sa2 − 2axd
2e

e−ltG , s26d

giving, for fsx,td, the expansion[cf. Eq. (10)]

fsx,td = o
n

cnstdexpF− 2nt −
a2

2e
s1 − e−ltdGcnsxd. s27d

To first order in the perturbation expansion, we find

cnst = 0d = F a

2e1/2Gn e−a2/2e

f2nn!g1/2. s28d

At the lowest order of perturbation theory, only thecn0’s,
which are given by Eq.(28) matter. Straightforward algebra
now shows that

Psx,td = F 1

pe
G1/2

exp −
x2 + a2

e
+

2axe−2t

e
exp

axse−ltd − e−2t

e

+ Oscn1d. s29d

Since all terms to first order have not been included in the
perturbation, the equilibrium distribution is not properly nor-
malized ast→` and has the extraneous factor exps−a2/ed.
After computation ofcn1 from Eq. (15) we find, after taking
the appropriate matrix elements and carrying out the integra-
tion over time, that

cn1std =
a

e
Sn + 1

2
D1/2

f1 − e−ltgcn+1s0d

+ Sl + 2

l − 2
Da

e
Sn

2
D1/2

f1 − e−sl−2dtgcn−1s0d. s30d

The coefficientscn±1s0d are known from Eq.(28) and after
some amount of algebra we get, correct to first order in the
perturbing “Hamiltonian,”

Psx,td = S 1

pe
D1/2

e−x2/eF1 +
2axe−lt

e
+

4axse−2t − e−ltd
sl − 2de

+ . . .G .

s31d

The effect of time dependence in the potential can be seen by
contrasting the above result, Eq.(31) with the sudden limit,
when the potential is instantaneously changed fromVisxd to
Vfsxd. The initial probability distribution corresponding to

Visxd is s1/ped1/2e−sx−ad2/e and this approaches the equilib-
rium distribution corresponding toVfsxd as

Psx,td = S 1

pe
D1/2

e−x2/eF1 +
2axe−2t

e
G . s32d

The coefficient 2ax/e of e−2t has the extra factorf1+2/sl
−2dg. Note that the time-dependent perturbation effectively
keeps the system from attaining equilibrium by always man-

aging to cause transition to neighboring states. The approach
to equilibrium depends on the value of the adiabaticity pa-
rameterl and there are three different regimes of interest.

(1) Whenl.2, the approach to equilibrium is governed
by e−2t but the coefficient of this term is significantly in-
creased.

(2) If l,2, the approach is controlled bye−lt and in the
long time limit

Psx,td ,
1

sped1/2e−x2/eF1 +S4ax/e

2 − l
De−ltG . s33d

(3) Finally, we have the extremely interesting situation of
l.2, in which case

Psx,td =
1

sped1/2e−x2/eS1 +
4axt

e
e−2t + ¯D . s34d

This is the resonance that we have discussed already, which
shows up as the coefficient of the usual correction toPeqsxd
diverging with time.

This divergence of the coefficient ofe−2t in Eq. (34)
would eventually get transferred to the argument of the ex-
ponential function as is usual in such cases. This can be
explicitly verified in this case, because an exact solution for
harmonic potentials has been written down by Hänggi and
Thomas[28]. The answer forPsx,td, adapting the work of
Hänggi and Thomas to this situation is

Psx,td = F 1

pes1 − e−4tdG1/2

3expF−
sx − ae−2tf1 + 2s1 − e−sl−2dtd/sl − 2dgd2

es1 − e−4td G .

s35d

If we expand the exponential in powers ofa all the three
cases cited above are exactly reproduced. This shows that the
method of quantum mechanical time-dependent perturbation
theory that we have adopted here is capable of yielding the
correct results.

B. Case II

We now turn to a situation where an initially single well
structureVi =x2 crosses over to a double well structureVf
=−x2/2+x4/4 as t→`. The approach to equilibrium in
double well potential is governed by the Kramers time, the
long time scale coming from the possibility of noise induced
hopping. Following the procedure outlined in Eqs.(4) and
(5), we get

H0 = − e
d2

dx2 +
sx3 − xd2

4e
−

1 + 3x2

2
, s36d
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H1 =
3

2
s1 − x2d −

1

4e
x2s3 − x2ds1 − x2d −

l

8e
x2s6 − x2d

+
1

4e
x2s3 − x2d2s1 − e−ltd. s37d

The low-lying part of the eigenvalue spectrum ofH0 is char-
acterized by a set of close doublets with exponentially small
separations, while the gap between two doublets is ofOs1d.
The ground stateE0=0, while the first excited state is the
ground state of the supersymmetric partner of

sVf8d
2

4e
−

Vf9

2
, s38d

and is exponentially small[29,30]. The next excited state has
eigenvalue approximately 2, and hence we can treat the dy-
namics of the low-lying states as that of a two level system.
Denoting the two states byf0 and f1, with eigenvalues 0
andd, then

fsx,td = c0stdf0sxd + c1stde−dtf1sxd. s39d

The dynamics ofc0 andc1 is governed by

ċ0 = kf0uH1uf0le−ltc0std + kf0uH1uf1lc1stde−sl+ddt, s40d

ċ1 = kf1uH1uf0le−sl−ddtc0std + kf1uH1uf1le−ltc1std. s41d

Since the perturbationH1 is even,kf1uH1uf0l=0, decoupling
c0 andc1. Integrating Eq.(41) and dropping terms likee−2lt

which are unimportant fort.l−1, we find

ċ1 = c1kf1uH1̃uf1le−lt, s42d

where

H1̃ =
3

2
s1 − x2d +

1

2e
x2s3 − x2ds1 − x2d −

l

8e
x2s6 − x2d.

s43d

The primary contribution tokf1uH1̃uf1l comes from the vi-
cinity of x=1 sincef1 is an antisymmetric wave function

strongly peaked nearx±1. Sincekf1uH1̃uf1l.−5l /4e, we
have

c1std = B
1 − e−lt

l
exp −

5l

4e
s44d

with B a constant of integration. From Eq.(39) we find, after
a series of standard manipulations, that

fsx,td . Nf0sxdF1 +
f1sxd
f0sxd

e−dt−
3s1−e−ltda

2l G
;Nf0sxdf1 + fsxde−defftg. s45d

In the abovea is a measure of the strength of the ground
state wave function at the origin, and where

deff = d +
3s1 − e−ltda

2lt
. s46d

The inverse ofdeff gives the effective Kramers time for the
system and is shorter than the scale for the time-independent
system. This speeding up is most effect in the adiabatic limit,
namely, forl!1.

IV. DISCUSSION AND SUMMARY

The above result is a simple analog of the global optimi-
zation principle on an evolving energy landscape. In this case
one is interested in finding the minima of a multidimensional
potential energy surface which constitutes the energy land-
scape in problems such as protein folding or finding the
ground state configuration of atomic or molecular clusters.
The observation of HSR[21,31] that continuously and adia-
batically varying potentials assist approach to the desired
configuration att→` by avoiding trapping in local minima.
We have shown in a model system, a similar time depen-
dence, the decrease of Kramers time makes escape from a
trapping potential easier.

The above demonstration of a reduced Kramers time is
for a one-dimensional system. The extension to two dimen-
sions is reasonably straightforward following the technique
in Ref. [30] when a well defined tunneling path exists be-
tween the two minima. Extensions to more general situations
and to three dimensions is being investigated. We have also
seen that this technique of dealing with time-dependent per-
turbations can model the stochastic resonance as a kind of
parametric resonance. With the emerging importance of sto-
chastic resonance in biological systems[10] it is possible
that yet another way of looking at stochastic resonance can
yield new insights.
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